
ldapper Documentation
Release 1.0.3

UMIACS Staff

Jun 09, 2020

Contents

1 Contents: 3

2 Indices and tables 11

Python Module Index 13

Index 15

i

ii

ldapper Documentation, Release 1.0.3

Ldapper is a simple ORM for interacting with an LDAP. It makes it straightforward to create models to perform all
your CRUD operations.

Contents 1

ldapper Documentation, Release 1.0.3

2 Contents

CHAPTER 1

Contents:

1.1 Installation

1.1.1 Via Python Package

Install the latest version from PyPI:

pip install ldapper

1.1.2 Via Source

The project is hosted at https://github.com/umiacs/ldapper and can be installed using git:

git clone https://github.com/umiacs/ldapper.git
cd ldapper
python setup.py install

1.2 Configuration

To get started, you’ll want to create a connection class. It will contain the settings necessary to connect to your LDAP.

from ldapper.connection import BaseConnection

class Connection(BaseConnection):
BASE_DN = 'dc=example,dc=com'
URI = 'ldaps://ldap.example.com'

You’ll go on to create a class that all of your models can inherit from in order to pick up on the connection settings
that you want them to be backed against.

3

https://github.com/umiacs/ldapper

ldapper Documentation, Release 1.0.3

Creating this class is not strictly necessary, but it is convenient if all of your models are going to use the same connec-
tion.

from ldapper.ldapnode import LDAPNode

class BaseModel(LDAPNode):
connection = Connection

Create your first model:

from ldapper.fields import ListField, StringField

class Person(BaseModel):
uid = StringField('uid', primary=True)
firstname = StringField('givenName')
lastname = StringField('sn')
common_names = ListField('cn')

class Meta:
objectclasses = ['top', 'inetOrgPerson']
dn_format = 'uid=%(uid)s,ou=people'
primary_dnprefix = 'ou=people'
secondary_dnprefix = 'ou=people'
identifying_attrs = ['uid']
searchable_fields = ['uid', 'givenName', 'sn']

If your LDAP is anonymous, you can start using this model right away:

>>> for person in Person.list():
... print(person.uid)
...
liam
derek
john

Otherwise, set an active connection first.

Connection.set_connection(Connection.connect())

The connection will be set statically for all Models to use.

1.3 Defining Models and Fields

1.3.1 Models

You will define all of your different kinds of objects using LDAPNode. An LDAPNode models LDAP objects that
must be composed of at least two objectClasses.

Let us imagine that we are trying to represent the people objects in our directory. We will define a Person class. Our
Person will contain a Field for each attribute that a Person has.

from ldapper import fields
from ldapper.ldapnode import LDAPNode

class BaseModel(LDAPNode):
(continues on next page)

4 Chapter 1. Contents:

ldapper Documentation, Release 1.0.3

(continued from previous page)

connection = Connection

class Person(BaseModel):
uid = fields.StringField('uid', primary=True)
uidnumber = fields.IntegerField('uidNumber')
firstname = fields.StringField('givenName')
lastname = fields.StringField('sn')
email_addresses = fields.ListField('mailLocalAddress')
photo = fields.BinaryField('jpegPhoto', optional=True)

class Meta:
objectclasses = ['top', 'inetOrgPerson', 'inetLocalMailRecipient']
dn_format = 'uid=%(uid)s,ou=people'
primary_dnprefix = 'ou=people'
secondary_dnprefix = 'ou=people'
identifying_attrs = ['uid']
searchable_fields = [

'uid', 'uidNumber', 'givenName', 'sn', 'mailLocalAddress']

Model definition uses the declaritive syntax seen in other popular ORMs like SQLAlchemy, Django, or Peewee.

Note: The Person gets its connection to your LDAP through the connection defined on the BaseModel.

1.3.2 Fields

Notice that there are many different field types available to you. All fields are subclasses of ldapper.fields.
Field and know how to serialize into and out of LDAP.

All fields accept one mandatory argument: the name of the attribute in LDAP.

Fields are required by default. You can pass optional=True to the field constructor to make it optional, as is the
case for the photo attribute.

In the next section we will use our newly-created Person.

1.4 The CRUD Operations

This section will make use of the Person class we defined in the previous section.

1.4.1 Create

person = Person(
uid='cnorris',
uidnumber=1337,
firstname='Chuck',
lastname='Norris',
email_addresses=[

'chuck@example.com',
'cnorris@megacorp.com',

],
)

1.4. The CRUD Operations 5

ldapper Documentation, Release 1.0.3

We’ve now created a person, but not yet saved it. We can check if the object exists() or has been saved:

>>> person.exists()
False

This will query the ldap and look to see if there is something with the DN of this object present.

Let’s go and save our person.

>>> person.save()
>>> person.exists()
True

1.4.2 Read

Tomorrow we come back and want to look up Chuck Norris’s LDAP entry. First we will need to fetch him.

>>> chuck = Person.fetch('cnorris')
>>> print(chuck)
DN: uid=cnorris,ou=people,dc=umiacs,dc=umd,dc=edu

uid: cnorris
firstname: Chuck
lastname: Norris

uidnumber: 1337
email_addresses: chuck@example.com
email_addresses: cnorris@megacorp.com

If we wanted to get all of our people, we can use list().

>>> people = Person.list()
>>> people
[uid=liam,ou=people,dc=umiacs,dc=umd,dc=edu,
uid=cnorris,ou=people,dc=umiacs,dc=umd,dc=edu]

Notice that the __repr__ is set to use the DN of the object.

1.4.3 Update

In order to make updates to the LDAP, we will need to authenticate.

>>> conn = Connection.connect()
Enter a LDAP loginDN or username: liam
Password for LDAP (liam):
>>> Connection.set_connection(conn)

Note: An object will use the connection object that was set at the time that it was instantiated. Subsequent changes
to the set, static connection will not affect the connection being used by existing objects.

>>> chuck = Person.fetch('cnorris')
>>> chuck.firstname = 'Carlos'

The careful and the paranoid can see what has changed. LDAP modifications only send modification requests for the
attributes that have changed.

6 Chapter 1. Contents:

ldapper Documentation, Release 1.0.3

>>> chuck.diff()
{'firstname': ('Chuck', 'Carlos')}

Let’s save() our changes.

>>> chuck.save()

save() calls the Person’s validate() method before doing anything else. LDAPNode has a default implemen-
tation that just returns True. We can override validate() and get fancy with what it means for an object to be
valid.

1.4.4 Destroy

All of that brings us to the final operation: destruction.

We can destroy our person by calling delete().

>>> chuck.delete()
>>> chuck.exists()
False

1.5 Hooks/Callbacks

There are four callbacks that can be overridden to perform an action before or after and object is added or deleted.

class Person(LDAPNode):
...

def _before_add_callback(self):
self.logger.info('Being called before add.')

def _after_add_callback(self):
self.logger.info('Being called after add.')

def _before_delete_callback(self):
self.logger.info('Being called before delete.')

def _after_delete_callback(self):
self.logger.info('Being called after delete.')

1.5.1 _before_add_callback

Gets called just before the LDAPNode is added to the LDAP.

1.5.2 _after_add_callback

Gets called just after the LDAPNode is added to the LDAP.

Note: _before_add_callback() and _after_add_callback() are only called when saving a new object,
not when saving existing objects.

1.5. Hooks/Callbacks 7

ldapper Documentation, Release 1.0.3

1.5.3 _before_delete_callback

Gets called just before the LDAPNode is deleted from the LDAP.

1.5.4 _after_delete_callback

Gets called just after the LDAPNode is deleted from the LDAP.

1.6 Advanced Topics

1.6.1 Complex Queries

ldapper has rich support for building arbitrarily complex filter queries. Similar to how Django does this, there is a Q
class that is the building block of queries. Q objects can be strung together to build any boolean query imaginable.

The simplest query we could build would be a single condition:

from ldapper.query import Q

Person.filter(
Q(employeetype='Director')

)

This will return all the Person objects where employeetype is equal to director. The cool thing here is that when the Q
object was compiled down, it figured out what the ldap field names on Person were to build the filter.

We can see that here:

>>> Q(employeetype='Director').compile(Person)
'(employeeType=Director)'

Let’s do something more interesting. Let’s return all of the people who are directors with either the first name “Bob”
or “Mary”.

We would query for those people like this:

Person.filter(
Q(employeetype='Director') & (Q(firstname='Bob') | Q(firstname='Mary'))

)

Note: Normal operator precedence rules in Python apply concerning &, |, and parentheses.

Q objects can also contain multiple conditions. They will all have to match.

Person.filter(
Q(firstname='Bob', lastname='Smith')

)

And of course if you turn logging up to DEBUG levels, you can inspect the actual filters that are being generated to
return results.

8 Chapter 1. Contents:

https://docs.python.org/3/reference/expressions.html#operator-precedence

ldapper Documentation, Release 1.0.3

1.7 API Documentation

This documentation is generated directly from the source code.

1.7.1 ldapper.connection

1.7.2 ldapper.exceptions

exception ldapper.exceptions.LdapperError
Bases: Exception

Base class for exceptions in this module.

A msg MUST be provided.

exception ldapper.exceptions.AddDNFailed(dn)
Bases: ldapper.exceptions.LdapperError

Exception raised when we failed to add a DN to the LDAP

dn -- DN that failed to be added

msg -- explanation of the error

exception ldapper.exceptions.ArgumentError(msg)
Bases: ldapper.exceptions.LdapperError

Exception raised when the arguments to a function are invalid

msg -- explanation of the error

exception ldapper.exceptions.DuplicateValue(attr, value)
Bases: ldapper.exceptions.LdapperError

Tried to write a duplicate value to the LDAP

attr -- Attribute name

value -- Attribute value

exception ldapper.exceptions.NoSuchAttrValue(dn, attribute, value)
Bases: ldapper.exceptions.LdapperError

Exception raised when a DN does not have a given value.

dn -- the DN that did not exist

attribute -- the attribute that is not present

value -- the value that the attribute was expected to have

msg -- explanation of the error

exception ldapper.exceptions.NoSuchDN(dn)
Bases: ldapper.exceptions.LdapperError

Exception raised when a DN does not exist.

dn -- the DN that did not exist

msg -- explanation of the error

1.7. API Documentation 9

ldapper Documentation, Release 1.0.3

exception ldapper.exceptions.InvalidDN(obj, name, dn)
Bases: ldapper.exceptions.LdapperError

Exception raised when a DN does not meet RFC 4514 syntax

dn -- the invalid dn

msg -- explanation of the error

1.7.3 ldapper.fields

1.7.4 ldapper.ldapnode

1.7.5 ldapper.query

class ldapper.query.Q(**conditions)
Bases: object

Query class used to build arbitrarily complex query filters.

Q objects are strung together and then compiled once we are told what the concrete LDAPNode class is going
to be.

The key to the Q class is that it appends conditions when of the same type without creating another level of
hierarchy, and it spawns child levels only when the operations (And, Or) switches.

compile(cls)

check_type_compat(other)

class ldapper.query.And(ops)
Bases: ldapper.query.Q

compile(cls)

class ldapper.query.Or(ops)
Bases: ldapper.query.Q

compile(cls)

1.7.6 ldapper.utils

10 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

ldapper Documentation, Release 1.0.3

12 Chapter 2. Indices and tables

Python Module Index

l
ldapper.exceptions, 9
ldapper.query, 10

13

ldapper Documentation, Release 1.0.3

14 Python Module Index

Index

A
AddDNFailed, 9
And (class in ldapper.query), 10
ArgumentError, 9

C
check_type_compat() (ldapper.query.Q method),

10
compile() (ldapper.query.And method), 10
compile() (ldapper.query.Or method), 10
compile() (ldapper.query.Q method), 10

D
DuplicateValue, 9

I
InvalidDN, 9

L
ldapper.exceptions (module), 9
ldapper.query (module), 10
LdapperError, 9

N
NoSuchAttrValue, 9
NoSuchDN, 9

O
Or (class in ldapper.query), 10

Q
Q (class in ldapper.query), 10

15

	Contents:
	Indices and tables
	Python Module Index
	Index

